Energy Blue Print
Scenario for a future energy supply

Moving from principles to action for energy supply that mitigates against climate change requires a long-term perspective. Energy infrastructure takes time to build up; new energy technologies take time to develop. Policy shifts often also need many years to take effect. In most world regions the transformation from fossil to renewable energies will require additional investment and higher supply costs over about twenty years.

concentrating solar power (CSP)

Solar thermal ‘concentrating’ power stations (CSP) can only use direct sunlight and are therefore dependent on very sunny locations. North Africa, for example, has a technical potential for this technology which far exceeds regional demand. The various solar thermal technologies (detailed in Chapter 9) have good prospects for further development and cost reductions. Because of their more simple design, ‘Fresnel’ collectors are considered as an option for additional cost trimming. The efficiency of central receiver systems can be increased by producing compressed air at a temperature of up to 1,000°C, which is then used to run a combined gas and steam turbine.

Depending on the level of irradiation and mode of operation, it is expected that long term future electricity generation costs of $ 6-10 cents/kWh can be achieved. This presupposes rapid market introduction in the next few years. CSP investment costs assumed for this study and shown in table 4.7 include costs for an increasing storage capacity up to 12 hours per day and additional solar fields up to solar multiple 3, achieving a maximum of 6,500 full load hours per year.

table 4.7: concentrating solar power (CSP) cost assumptions