Energy Blue Print
France 2012

Moving from principles to action for energy supply that mitigates against climate change requires a long-term perspective. Energy infrastructure takes time to build up; new energy technologies take time to develop. Policy shifts often also need many years to take effect. In most world regions the transformation from fossil to renewable energies will require additional investment and higher supply costs over about twenty years

download the report France 2012

scenario for a future energy supply

Moving from principles to action for energy supply that mitigates against climate change requires a long-term perspective. Energy infrastructure takes time to build up; new energy technologies take time to develop. Policy shifts often also need many years to take effect. In most world regions the transformation from fossil to renewable energies will require additional investment and higher supply costs over about twenty years. However, there will be tremendous economic benefits in the long term, due to much lower consumption of increasingly expensive, rare or imported fuels. Any analysis that seeks to tackle energy and environmental issues therefore needs to look ahead at least half a century.

Scenarios are necessary to describe possible development paths, to give decision-makers a broad overview and indicate how far they can shape the future energy system. Two scenarios are used here to show the wide range of possible pathways in each world region for a future energy supply system:

  • Reference scenario, reflecting a continuation of current trends and policies.
  • The Energy [R]evolution scenario, designed to achieve a set of environmental policy targets.

The Reference scenario is based on the AMS Mesure scenario, prepared by Enerdata for the french DG Climate and Energy. It only integrates French policies that exist by the 1st January 2010. It is so far the most faithful scenario to the DG’s vision for energy, although since the 2012 elections a new vision on electricity, reducing nuclear power’s share to 50%, has been defined. This scenario basically integrates policies framed by the Grenelle’s process (started in 2007) although it does not meet its initial targets. As the scenario ends in 2030, it has extended by extrapolating its key macroeconomic and energy indicators forward to 2050. This provides a baseline for comparison with the Energy [R]evolution scenario.

The global Energy [R]evolution scenario has a key target to reduce worldwide carbon dioxide emissions from energy use down to a level of below 4 Gigatonnes per year by 2050 in order to hold the increase in average global temperature under +2°C. A second objective is the global phasing out of nuclear energy. The Energy [R]evolution scenarios published by Greenpeace in 2007, 2008 and 2010 included ‘basic’ and ‘advanced’ scenarios, the less ambitious target was for 10 Gigatonnes CO2 emissions per year by 2050. However, this 2012 revision only focuses on the more ambitious “advanced” Energy [R]evolution scenario first published in 2010.

This global carbon dioxide emission reduction target translates into a carbon budget for Europe (EU 27) and this into a carbon budget for France: the basis of this Energy [R]evolution for France. To achieve the target, the scenario includes significant efforts to fully exploit the large potential for energy efficiency, using currently available best practice technology. At the same time, all cost-effective renewable energy sources are used for heat and electricity generation as well as the production of biofuels. The general framework parameters for population and GDP growth remain unchanged from the Reference scenario.

Efficiency in use of electricity and fuels in industry and “other sectors” has been completely re-evaluated using a consistent approach based on technical efficiency potentials and energy intensities. The resulting consumption pathway is close to the projection of the earlier editions. One key difference for the new Energy [R]evolution scenario is it incorporates stronger efforts to develop better technologies to achieve CO2 reduction. There is lower demand factored into the transport sector (compared to the basic scenario in 2008 and 2010), from a change in driving patterns and a faster uptake of efficient combustion vehicles and a larger share of electric and plug-in hybrid vehicles after 2025. This scenario contains a lower use of biofuels for private vehicles following the latest scientific reports that indicate that biofuels might have a higher greenhouse gas emission footprint than fossil fuels. Current EU sustainability standards for biofuels are insufficient to avoid competition with food growing and to avoid deforestation.

The new Energy [R]evolution scenario also foresees a shift in the use of renewables from power to heat, thanks to the enormous and diverse potential for renewable power. Assumptions for the heating sector include a fast expansion of the use of district heat and more electricity for process heat in the industry sector. More geothermal heat pumps are also included, which leads to a higher overall electricity demand, when combined with a larger share of electric cars for transport. A faster expansion of solar and geothermal heating systems is also assumed. Hydrogen generated by electrolysis and renewable electricity is introduced in this scenario as third renewable fuel in the transport sector after 2025, complementary to biofuels and direct use of renewable electricity. Hydrogen is also applied as a chemical storage medium for electricity from renewables and used in industrial combustion processes and cogeneration for provision of heat and electricity, as well, and for short periods also reconversion into electricity. Hydrogen generation can have high energy losses, however the limited potentials of biofuels and probably also battery electric mobility makes it necessary to have a third renewable option. Alternatively, this renewable hydrogen could be converted into synthetic methane or liquid fuels depending on economic benefits (storage costs vs. additional losses) as well as technology and market development in the transport sector (combustion engines vs. fuel cells).

In all sectors, the latest market development projections of the renewable energy industry have been taken into account. The fast introduction of electric vehicles, combined with the implementation of smart grids and fast expansion of super grids allows a high share of fluctuating renewable power generation (photovoltaic and wind) to be employed. In the global secenario, renewable energy would pass 30% of the global energy supply just after 2020. The Energy [R]evolution scenario for France shows that renewable energy would pass 15% of France's energy supply before 2020.

The quantities of biomass power generators and large hydro power remain limited in the new Energy [R]evolution scenarios, for reasons of ecological sustainability.